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ABSTRACT

The definition of fuzzy convexity is reviewed, and q
some results on projections of convex and fuzzy-convex

sets are established. Digital fuzzy convexity is de-
fined, and relationships among alternative definitions
are investigated.
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1. Introduction

Convexity was one of the first mathematical concepts
to be "fuzzified" when fuzzy set theory was initially
developed [l]. This paper reviews the concept and pre-
sents some results on projections of convex and fuzzily
convex sets. It also introduces the concept of digital
fuzzy convexity for sets of lattice points; this is a
"fuzzification” of digital convexity, which has been exten-
sively studied [2]. We deal here with (fuzzy) subsets of
the plane, or with planar lattice points, even though many
of the concepts introduced have immediate extensions to

higher-dimensional spaces.
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( 2. Fuzzy convexity

2.1 Basic concepts

Let E be the Euclidean plane; we recall [1] that a

fuzzy subset u of E is a mapping from E into [0,1]. The

value u(P) of u for a point PEE is called the degree of

membership of P in u. We say that W is (fuzzily) convex

if for all P,Q in E, and all R on the line segment PQ, we
have B(R)z u(P)A u(Q), where A means "min" - in other words,
every point on PQ has degree of membership in u at least as

high as the lesser of the degrees of P and Q.

If u is a mapping into {0,1}, it is the characteristic
function of a subset of E (namely, u_l(l)); for brevity,
we speak of such a y as "being" a subset of E. Evidently,

a subset uy is fuzzily convex iff it is convex in the ori-

dinary sense. Indeed, if u is into {0,1}, the condition !

H(R)2u(P)AU(Q) is vacuous unless u(P) H(Q) = 1, and it

then requires that p(R) = 1; in other words, if P,Q are in
Y, it requires that any point on the segment PQ also be in
v, which is the standard definition of convexity.

A real-valued function f defined on the real line will

be called min-free if, for all points AsB<C, we have f(B) =
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f(A)Af(C). Thus a fuzzy set v is convex iff all its cross-

V.

sections are min-free functions. In Sections 2.2-3 we will

consider under what circumstances the projections of (fuzzily)

convex sets are min-free functions. Note that a fuzzy sub-
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set of tue real line is convex iff, regarded as a real-valued
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function, it is min-free. N
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For any Ostsl, the set u = {P€E|n (P)>t} will be called

| a level set of u.

Proposition 1. u is convex iff its level sets are all

convex. (We regard the empty set as convex.)

Proof: u(P) and u(Q) >t require u(R)>t for all REPQ, making
M, convex. Conversely, given any P,Q and any REPQ, suppdse

HW(R)<u(P)Au(Q), and let t

u(R); then u(P)>t and u(Q)>t,

so that My is not convex.//

Readily, the proposition is also true if we define "level set"

using 2 instead of >.
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2.2 The sup projection

For any line £ and any point P€%, let £  be the line

p
perpendicular to £ at P. By the sup projection of a fuzzy

set u on £ we mean the function My that maps each point P€R
into sup {u(Q)|Q€£P}. Evidently u, is a fuzzy subset of &,
since Osuzsl, and if u is an ordinary set, so is 7} for all %.
It is easily seen that if u is a connected set, My is an
interval. (Indeed, given any P,Qéul, there must exist points
of u on ZP and RQ; since y is connected, there is a path in

1 joining these points, and readily the sup projection of this

path must contain the interval PQ.)

Proposition 2. If u is convex, Sso is Mg -

Proof: Let A,B,C (in that order) be points of £. Given any
£>0, let A' and C' be points on &A and 2., respectively, such
that uz(A)<u(A')+e and ul(C)<u(C')+s. Let B' be the inter-
section of segment A'C' with RB. Since u is convex
and B'€A'C', we have

w(B")2u (A")AU(C') = [up(A)-elaluy (C)-e] = [uy (A)Au, (C)]-¢
But v (B')s u (B) by definition of the sup projection. Hence
ug(B)z[ul(A)Auz(C)]-e, and since € is arbitrary, we have

uz(B)Zug(A)Auz(C), proving Hy convex.//

The converse of Proposition 2 is false; even if all the

sup projections of y are convex, p need not be convex. To

e
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see this, let p be an ordinary set and suppose that
L u is connected. By the remarks preceding Proposition 2,
the sup projection of u on any £ is an interval, hence

is convex, but u itself need not be convex.
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2.3 The integral projection

By the integral projection of u on & we mean the
function u; that maps each point P€L into [u, the
integral of u over the line RP perpendiculag to £ at P.
Note that if u is an ordinary convex set, zp meets Y in
an interval, and f; is just the length of this interval.
We assume here thii this integral always exists. Note that

we no longer have Osﬁzsl, as we did in the case of the

sup projection.

Proposition 3. If u is a convex set, ﬁz is a min-free

function.

Proof: Let A,B,C, (in that order) be points of 2. Each of

the lines & L., meets the convex set u in an interval

A'QB' C
{possibly degenerate or empty):;

let the endpoints of these intervals be A',A",B',B", and

C',C", respectively (see Figure 1).

Since p is convex, the segments A'C' and A"C" are subsets of

u; hence the points P,Q where these segments meet QB are in

u, and lie between B' and B". Now evidently min(|A'A"|,|C'C"|)<
|PQ|<max (|A'A"||C'C"|), where bars denote the length of an
interval. But |A'A"|=u,(A) and |C'C"|=li,(C), as pointed out

in the preceding paragraph. Hence Ul(B)=|B'B"IZIPQ|2min(|A'A“|,

|c'c"|)=u, (A)Al, (C), proving that W, is min-free.//

Unfortunately, Proposition 3 is false if u is only

assumed to be fuzzily convex. To see this, let u be defined
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as follows: y = 0.1 in the quadrilateral whose vertices

are (0,0),(0,10), (9,0), and (9,1); except thatu= 0.9 on
the line segment (9,0),(9,1) (see Figure 2). Since the
level sets of u are convex, u is fuzzily convex (see
Section 2.1). Fut for the integral projection of u on
the x-axis we have u(0) = 10, u(9) = 9, while u(5) = 5,
so that u is not a min-free function.

The converse of Proposition 3 is also false; even
if all the integral projections of u are min-free functions,
v 1s not necessarily convex. In fact, consider the L-shaped
polygon I whose vertices are (0,0),(0,2),(2,0),(2,2),(1,1), and
(2,1) (see Figure 3), and project I onto an arbitrary line %
(Figure 4). It is evident that the value of this projection u
has no strict local minimum (see Figure 4: it strictly
increases from P, to PZ' remains constant from P, to P_,

1 2 3

strictly decreases from P3 to P4, remains constant from P4

to Pg, and strictly decreases from P5 to P6), hence is a

min-free function, but 1, of course, is not convex.
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3. Puzzy digital convexity

3.1 Digital convexity (2]

Let R be a subset of the plane such that (ET)=R
(R is the closure of its interior); we call such an R
regular. Let us regard each lattice point P as the center
of an open unit square (a "cell")P*. The set I(R)={P|RNP*#¢}

is called the digital image of R. Note that we have not

defined the digital image for arbitrary sets, but only

for regular sets.

Proposition 4. ReU {P*|P€I(R)}, and I(R) is the smallest

set of lattice points for which this is true.

Proof: By definition of I(R), R meets Q* iff Q€I(R); and
if R meets any Q* on its boundary, it meets the interior of

at least one of the cells that share that boundary.//

A set of S of lattice points is called digitally convex !

if it is the digital image of a convex regular set R.

Proposition 5. A digitally convex set is 4-connected.

Proof: We show that the digital image S of any arcwise connected

regular set R is 4-connected. For all P,Q€S, R meets P* and
Q*, say in the points (x,y) and (u,v), and there is a path
in R from (x,y) to (u,v). It is easily seen that this path

meets a sequence of interiors of 4-adjacent cells which

thus yield a 4-path in S from P to Q.//




The proofs of the following two theorems can be

tound in [2].
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Theorem 6. The following properties of a 4-connected

L

set S are equivalent:

(a) For all P,Q, in S, no point not in § lies on the line

7 SRR

! segment PQ

(b)

s

For all P,Q, in S, and all (u,v)€PQ, there exists

, a point (x,y)€S such that max (|x-u|,]|y-v]|)<1l.//

We call S regular if every P€S has at least two (hori-
zontal or vertical) neighborsin S.
! Theorem 7. Anvy digitally convex set has the properties of

Theorem 6. A regular set S is digitallyconvex iff it has

the properties of Theorem ¢.//

. If S is not regqular, it may satisfy the properties of

Theorem 6 but not have a convex preimage.

In Section 3.2 we discuss the possibility of generaliz-

ing these results to fuzzily convex sets,
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3.2 Fuzzy digital convexity

Given a fuzzy subset y of the plane, we define a
fuzzy subset u' of the lattice points by

u' (P)zsuplu(x,y)| (x,y) €P*}

Proposition 8. If u is regqular, ué is its digital image.

Proof: “t

1
PGut.

The corresponding statement is not true if we use 2z rather
than > in defining level sets. 1Indeed, if suzh a level set
. meets P*, we have sup {u(x,y)| (x,y)€P*}2t, so that u'(P)=zt

and PEUL ; but conversely, if the supzt, may only meet P*

He
(though it does have to meet the interior of some cell that
shares its border with P*, if He is regular). Thus we know

only that if My is regular uL contains its digital image.

Corollary 9. If p is an ordinary regular set, u' is its

digital image.
Proof: M=, is regular, hence ué =u' is its digital image.

We call u fuzzily regular if all its level sets M, are re-

gular, Ost<l., If u is fuzzily regular, we call u' its

digital image.

We call u' fuzzily digitally convex (FDC) if it is the

digital image of a fuzzily regular, fuzzily convex u.

meets P* iff sup{u(x,y) | (x,y)€P*}>t iff u'(P)>t iff
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Analogous to Proposition 1 we then have

Proposition 11. If y' is FDC, all its level sets are

digitally convex.

Proof: Every ué is the digital image of My (Proposition

8), which is convex (Proposition 1).//
Analogous to Condition (a) in Theorem 6, we have

Proposition 12. If u' is FDC, then for all collinear triples

of lattice points A,B,C, with B between A and C, we have

pu'(B)2u' (A)Aau' (C).

Proof: Given any £>0, let A',C' be points of the cell
interiors A*,C* such that u'(A)<u(A')+e,u' (C)gu(C')+e,

where 1'=I(u). Evidently, A'C' meets the cell interior B*;

let B' be a point of B*AA'C'. Since p is fuzzily convex,

we have u(B')zu(A")Au(C')> ' (A)-e)A(u'(C)-e)=(u' (A)Au'(C))-e.
Since u'(B) = sup{u(x,y)|(x,y}¢B*}z u(B'), we thus have u'(B)>
w'"(AYAu' (C)-g; and since € is arbitrary, it follows that

u' (B)zu'(A)ap’ (C).
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